Vector Monitoring
Detecting Drift in Multi-Dimensional ML and GenAI Model Data
Define Custom Features
from fiddler import CustomFeature, TextEmbedding, ImageEmbedding
# Group columns into vectors
custom_feature_1 = CustomFeature.from_columns(
['f1', 'f2', 'f3'], custom_name='vector1'
)
custom_feature_2 = CustomFeature.from_columns(
['f1', 'f2', 'f3'], n_clusters=5, custom_name='vector2'
)
# Use existing embeddings
custom_feature_3 = TextEmbedding(
name='Document Text Embedding', column='text_embedding_col', source_column='text'
)
custom_feature_4 = ImageEmbedding(
name='Image Embedding', column='image_embedding_col', source_column='image_url'
)
# Define automated text embedding enrichment
custom_feature_5 = TextEmbedding(
name='Document Text Embedding',
source_column='doc_col',
column='Enrichment Unstructured Embedding',
n_tags=10,
)Passing Custom Features List to ModelSpec
Understanding Drift Detection Algorithm
Performance considerations
Best practices
Risk Considerations for AI/ML Applications
Related topics
Last updated
Was this helpful?