LogoLogo
👨‍💻 API Reference📣 Release Notes📺 Request a Demo
  • Introduction to Fiddler
    • Monitor, Analyze, and Protect your ML Models and Gen AI Applications
  • Fiddler Doc Chatbot
  • First Steps
    • Getting Started With Fiddler Guardrails
    • Getting Started with LLM Monitoring
    • Getting Started with ML Model Observability
  • Tutorials & Quick Starts
    • LLM and GenAI
      • LLM Evaluation - Compare Outputs
      • LLM Monitoring - Simple
    • Fiddler Free Guardrails
      • Guardrails - Quick Start Guide
      • Guardrails - Faithfulness
      • Guardrails - Safety
      • Guardrails FAQ
    • ML Observability
      • ML Monitoring - Simple
      • ML Monitoring - NLP Inputs
      • ML Monitoring - Class Imbalance
      • ML Monitoring - Model Versions
      • ML Monitoring - Ranking
      • ML Monitoring - Regression
      • ML Monitoring - Feature Impact
      • ML Monitoring - CV Inputs
  • Glossary
    • Product Concepts
      • Baseline
      • Custom Metric
      • Data Drift
      • Embedding Visualization
      • Fiddler Guardrails
      • Fiddler Trust Service
      • LLM and GenAI Observability
      • Metric
      • Model Drift
      • Model Performance
      • ML Observability
      • Trust Score
  • Product Guide
    • LLM Application Monitoring & Protection
      • LLM-Based Metrics
      • Embedding Visualizations for LLM Monitoring and Analysis
      • Selecting Enrichments
      • Enrichments (Private Preview)
      • Guardrails for Proactive Application Protection
    • Optimize Your ML Models and LLMs with Fiddler's Comprehensive Monitoring
      • Alerts
      • Package-Based Alerts (Private Preview)
      • Class Imbalanced Data
      • Enhance ML and LLM Insights with Custom Metrics
      • Data Drift: Monitor Model Performance Changes with Fiddler's Insights
      • Ensuring Data Integrity in ML Models And LLMs
      • Embedding Visualization With UMAP
      • Fiddler Query Language
      • Model Versions
      • How to Effectively Use the Monitoring Chart UI
      • Performance Tracking
      • Model Segments: Analyze Cohorts for Performance Insights and Bias Detection
      • Statistics
      • Monitoring ML Model and LLM Traffic
      • Vector Monitoring
    • Enhance Model Insights with Fiddler's Slice and Explain
      • Events Table in RCA
      • Feature Analytics Creation
      • Metric Card Creation
      • Performance Charts Creation
      • Performance Charts Visualization
    • Master AI Monitoring: Create, Customize, and Compare Dashboards
      • Creating Dashboards
      • Dashboard Interactions
      • Dashboard Utilities
    • Adding and Editing Models in the UI
      • Model Editor UI
      • Model Schema Editing Guide
    • Fairness
    • Explainability
      • Model: Artifacts, Package, Surrogate
      • Global Explainability: Visualize Feature Impact and Importance in Fiddler
      • Point Explainability
      • Flexible Model Deployment
        • On Prem Manual Flexible Model Deployment XAI
  • Technical Reference
    • Python Client API Reference
    • Python Client Guides
      • Installation and Setup
      • Model Onboarding
        • Create a Project and Onboard a Model for Observation
        • Model Task Types
        • Customizing your Model Schema
        • Specifying Custom Missing Value Representations
      • Publishing Inference Data
        • Creating a Baseline Dataset
        • Publishing Batches Of Events
        • Publishing Ranking Events
        • Streaming Live Events
        • Updating Already Published Events
        • Deleting Events From Fiddler
      • Creating and Managing Alerts
      • Explainability Examples
        • Adding a Surrogate Model
        • Uploading Model Artifacts
        • Updating Model Artifacts
        • ML Framework Examples
          • Scikit Learn
          • Tensorflow HDF5
          • Tensorflow Savedmodel
          • Xgboost
        • Model Task Examples
          • Binary Classification
          • Multiclass Classification
          • Regression
          • Uploading A Ranking Model Artifact
    • Integrations
      • Data Pipeline Integrations
        • Airflow Integration
        • BigQuery Integration
        • Integration With S3
        • Kafka Integration
        • Sagemaker Integration
        • Snowflake Integration
      • ML Platform Integrations
        • Integrate Fiddler with Databricks for Model Monitoring and Explainability
        • Datadog Integration
        • ML Flow Integration
      • Alerting Integrations
        • PagerDuty Integration
    • Comprehensive REST API Reference
      • Projects REST API Guide
      • Model REST API Guide
      • File Upload REST API Guide
      • Custom Metrics REST API Guide
      • Segments REST API Guide
      • Baselines REST API Guide
      • Jobs REST API Guide
      • Alert Rules REST API Guide
      • Environments REST API Guide
      • Explainability REST API Guide
      • Server Info REST API Guide
      • Events REST API Guide
      • Fiddler Trust Service REST API Guide
    • Fiddler Free Guardrails Documentation
  • Configuration Guide
    • Authentication & Authorization
      • Adding Users
      • Overview of Role-Based Access Control
      • Email Authentication
      • Okta Integration
      • SSO with Azure AD
      • Ping Identity SAML SSO Integration
      • Mapping LDAP Groups & Users to Fiddler Teams
    • Application Settings
    • Supported Browsers
  • History
    • Release Notes
    • Python Client History
    • Compatibility Matrix
    • Product Maturity Definitions
Powered by GitBook
On this page
  • Supported Data Formats
  • Supported Data Locations
  • Batch Publishing Examples

Was this helpful?

  1. Technical Reference
  2. Python Client Guides
  3. Publishing Inference Data

Publishing Batches Of Events

PreviousCreating a Baseline DatasetNextPublishing Ranking Events

Last updated 1 month ago

Was this helpful?

© 2024 Fiddler Labs, Inc.

Fiddler provides multiple options for publishing batches of production data, allowing you to choose the format and method that best suits your needs.

Supported Data Formats

  • pandas DataFrame

  • CSV file (.csv),

  • Parquet file (.parquet)

Supported Data Locations

  • In memory - pandas DataFrame

  • Local disk - CSV, parquet

Note:

Fiddler's Python client offers the ability to integrate with Cloud data stores such as AWS S3. Refer to our Integrations Guides for examples.

Batch Publishing Examples

Publish a batch of inference events using a parquet file, CSV file, or DataFrame using the function. When publishing in batch mode, Model.publish() executes asynchronously and returns a object. The job can be used to:

  • Track by ID in the UI on the Jobs page

  • Poll for status until completion

  • Use the wait() method for synchronous behavior

  • Log the job ID for reference

Parquet File

import fiddler as fdl

# Instantiate the Model object for your model
project = fdl.Project.from_name(name='your_project_name')
model = fdl.Model.from_name(name='your_model_name', project_id=project.id)
publish_job = model.publish('my_events_batch.parquet')

# The publish() method is asynchronous. Use the publish job's wait() method 
# if synchronous behavior is desired.
publish_job.wait() 

CSV File

import fiddler as fdl

# Instantiate the Model object for your model
project = fdl.Project.from_name(name='your_project_name')
model = fdl.Model.from_name(name='your_model_name', project_id=project.id)
publish_job = model.publish('my_events_batch.csv')

Pandas DataFrame

import pandas as pd
import fiddler as fdl

# Instantiate the Model object for your model
project = fdl.Project.from_name(name='your_project_name')
model = fdl.Model.from_name(name='your_model_name', project_id=project.id)

my_events_df = pd.read_csv('my_events_batch.csv')
publish_job = model.publish(my_events_df)

Please allow a few minutes for events to populate the related charts. Total processing time is a function of both width and count of the inference events.


Need help? Contact us at .

💡
help@fiddler.ai
Model.publish()
Job