Fiddler Query Language
Last updated
Last updated
© 2024 Fiddler Labs, Inc.
Custom Metrics and Segments are defined using the Fiddler Query Language (FQL), a flexible set of constants, operators, and functions which can accommodate a large variety of metrics.
Term | Definition |
---|---|
Column names can be referenced by name either with double quotes ("my_column") or with no quotes (my_column).
Single quotes (') are used to represent string values.
FQL distinguishes between three data types:
Data type | Supported values | Examples | Supported Model Schema Data Types |
---|---|---|---|
Row-level functions can be applied either to a single value or to a column/row expression (in which case they are mapped element-wise to each value in the column/row expression).
Every Custom Metric must be wrapped in an aggregate function or be a combination of aggregate functions.
Symbol | Description |
---|---|
Symbol | Description | Syntax | Returns | Examples |
---|---|---|---|---|
Symbol | Description | Syntax | Returns | Examples |
---|---|---|---|---|
Symbol | Description | Syntax | Returns | Examples |
---|---|---|---|---|
Symbol | Description | Syntax | Returns | Examples |
---|---|---|---|---|
Symbol | Description | Syntax | Returns | Examples |
---|---|---|---|---|
Row-level function
A function which executes row-wise for a set of data. Returns a value for each row.
Aggregate function
A function which executes across rows. Returns a single value for a given set of rows.
Number
Any numeric value (integers and floats are both included)
10
2.34
Boolean
Only true
and false
true
false
String
Any value wrapped in single quotes ('
)
'This is a string.'
'200.0'
true
Boolean constant for true expressions
false
Boolean constant for false expressions
^
Exponentiation
Number ^ Number
Number
2.5 ^ 4
(column1 - column2)^2
-
Unary negation
-Number
Number
-column1
*
Multiplication
Number * Number
Number
2 * 10
2 * column1
column1 * column2
sum(column1) * 10
/
Division
Number / Number
Number
2 / 10
2 / column1
column1 / column2
sum(column1) / 10
%
Modulo
Number % Number
Number
2 % 10
2 % column1
column1 % column2
sum(column1) % 10
+
Addition
Number + Number
Number
2 + 2
2 + column1
column1 + column2
average(column1) + 2
-
Subtraction
Number - Number
Number
2 - 2
2 - column1
column1 - column2
average(column1) - 2
<
Less than
Number < Number
Boolean
10 < 20
column1 < 10
column1 < column2
average(column2) < 5
<=
Less than or equal to
Number <= Number
Boolean
10 <= 20
column1 <= 10
column1 <= column2
average(column2) <= 5
>
Greater than
Number > Number
Boolean
10 > 20
column1 > 10
column1 > column2
average(column2) > 5
>=
Greater than or equal to
Number >= Number
Boolean
10 >= 20
column1 >= 10
column1 >= column2
average(column2) >= 5
==
Equals
Number == Number
Boolean
10 == 20
column1 == 10
column1 == column2
average(column2) == 5
!=
Does not equal
Number != Number
Boolean
10 != 20
column1 != 10
column1 != column2
average(column2) != 5
not
Logical NOT
not Boolean
Boolean
not true
not column1
and
Logical AND
Boolean and Boolean
Boolean
true and false
column1 and column2
or
Logical OR
Boolean or Boolean
Boolean
true or false
column1 or column2
e()
Base of the natural logarithm
e()
Number
e() == 2.718281828459045
pi()
The ratio of a circle's circumference to its diameter
pi()
Number
pi() == 3.141592653589793
if(condition, value1, value2)
Evaluates condition
and returns value1
if true, otherwise returns value2
.
value1
and value2
must have the same type.
if(Boolean, Any, Any)
Any
if(false, 'yes', 'no') == 'no'
if(column1 == 1, 'yes', 'no')
length(x)
Returns the length of string x
.
length(String)
Number
length('Hello world') == 11
to_string(x)
Converts a value x
to a string.
to_string(Any)
String
to_string(42) == '42'
to_string(true) == 'true'
startswith(str, prefix)
Returns true
if str
starts with prefix
.
startswith(String, String)
Boolean
startswith('abcde', 'abc')
substring(str, offset, length)
Returns a substring of str
of length length
from offset offset
. The first character has an offset of 1.
substring(String, Number, Number)
String
substring('abcde', 2, 3) == 'bcd'
match(str, regex)
Returns true
if str
matches the pattern regex
in re2 regular syntax.
match(String, String)
Boolean
match('abcde', 'a.c.*e')
is_null(x)
Returns true
if x
is null, otherwise returns false
.
is_null(Any)
Boolean
is_null('') == true
is_null("column1")
is_not_null(x)
Returns true
if x
is not null, otherwise returns false
.
is_null(Any)
Boolean
is_not_null('') == false
`is_not_null("column1")
abs(x)
Returns the absolute value of number x
.
abs(Number)
Number
abs(-3) == 3
exp(x)
Returns e^x
, where e
is the base of the natural logarithm.
exp(Number)
Number
exp(1) == 2.718281828459045
log(x)
Returns the natural logarithm (base e
) of number x
.
log(Number)
Number
log(e) == 1
log2(x)
Returns the binary logarithm (base 2
) of number x
.
log2(Number)
Number
log2(16) == 4
log10(x)
Returns the binary logarithm (base 10
) of number x
.
log10(Number)
Number
log10(1000) == 3
sqrt(x)
Returns the positive square root of number x
.
sqrt(Number)
Number
sqrt(144) == 12
sum(x)
Returns the sum of a numeric column or row expression x
.
sum(Number)
Number
sum(column1 + column2)
average(x)
Returns the arithmetic mean/average value of a numeric column or row expression x
.
average(Number)
Number
average(2 * column1)
count(x)
Returns the number of non-null rows of a column or row expression x
.
count(Any)
Number
count(column1)
jsd(column, baseline)
The Jensen-Shannon distance of column column
with respect to baseline baseline
.
jsd(Any, String)
Number
jsd(column1, 'my_baseline')
psi(column, baseline)
The population stability index of column column
with respect to baseline baseline
.
psi(Any, String)
Number
psi(column1, 'my_baseline')
null_violation_count(column)
Number of rows with null values in column column
.
null_violation_count(Any)
Number
null_violation_count(column1)
range_violation_count(column)
Number of rows with out-of-range values in column column
.
range_violation_count(Any)
Number
range_violation_count(column1)
type_violation_count(column)
Number of rows with invalid data types in column column
.
type_violation_count(Any)
Number
type_violation_count(column1)
any_violation_count(column)
Number of rows with at least one Data Integrity violation in column
.
any_violation_count(Any)
Number
any_violation_count(column1)
traffic()
Total row count. Includes null rows.
traffic()
Number
traffic()
tp(class)
True positive count. Available for binary classification and multiclass classification models. For multiclass, class
is used to specify the positive class.
tp(class=Optional[String])
Number
tp()
tp(class='class1')
tn(class)
True negative count. Available for binary classification and multiclass classification models. For multiclass, class
is used to specify the positive class.
tn(class=Optional[String])
Number
tn()
tn(class='class1')
fp(class)
False positive count. Available for binary classification and multiclass classification models. For multiclass, class
is used to specify the positive class.
fp(class=Optional[String])
Number
fp()
fp(class='class1')
fn(class)
False negative count. Available for binary classification and multiclass classification models. For multiclass, class
is used to specify the positive class.
fn(class=Optional[String])
Number
fn()
fn(class='class1')
precision(target, threshold)
Precision between target and output. Available for binary classification model tasks.
If target
is specified, it will be used in place of the default target column.
precision(target=Optional[Any], threshold=Optional[Number])
Number
precision()
precision(target=column1)
precision(threshold=0.5)
precision(target=column1, threshold=0.5)
recall(target, threshold)
Recall between target and output. Available for binary classification model tasks.
If target
is specified, it will be used in place of the default target column.
recall(target=Optional[Any], threshold=Optional[Number])
Number
recall()
recall(target=column1)
recall(threshold=0.5)
recall(target=column1, threshold=0.5)
f1_score(target, threshold)
F1 score between target and output. Available for binary classification model tasks.
If target
is specified, it will be used in place of the default target column.
f1_score(target=Optional[Any], threshold=Optional[Number])
Number
f1_score()
f1_score(target=column1)
f1_score(threshold=0.5)
f1_score(target=column1, threshold=0.5)
fpr(target, threshold)
False positive rate between target and output. Available for binary classification model tasks.
If target
is specified, it will be used in place of the default target column.
fpr(target=Optional[Any], threshold=Optional[Number])
Number
fpr()
fpr(target=column1)
fpr(threshold=0.5)
fpr(target=column1, threshold=0.5)
auroc(target)
Area under the ROC curve between target and output. Available for binary classification model tasks.
If target
is specified, it will be used in place of the default target column.
auroc(target=Optional[Any])
Number
auroc()
auroc(target=column1)
geometric_mean(target, threshold)
Geometric mean score between target and output. Available for binary classification model tasks.
If target
is specified, it will be used in place of the default target column.
geometric_mean(target=Optional[Any], threshold=Optional[Number])
Number
geometric_mean()
geometric_mean(target=column1)
geometric_mean(threshold=0.5)
geometric_mean(target=column1, threshold=0.5)
expected_calibration_error(target)
Expected calibration error between target and output. Available for binary classification model tasks.
If target
is specified, it will be used in place of the default target column.
expected_calibration_error(target=Optional[Any])
Number
expected_calibration_error()
expected_calibration_error(target=column1)
log_loss(target)
Log loss (binary cross entropy) between target and output. Available for binary classification model tasks.
If target
is specified, it will be used in place of the default target column.
log_loss(target=Optional[Any])
Number
log_loss()
log_loss(target=column1)
calibrated_threshold(target)
Optimal threshold value for a high TPR and a low FPR. Available for binary classification model tasks.
If target
is specified, it will be used in place of the default target column.
calibrated_threshold(target=Optional[Any])
Number
calibrated_threshold()
calibrated_threshold(target=column1)
accuracy(target, threshold)
Accuracy score between target and outputs. Available for multiclass classification model tasks.
If target
is specified, it will be used in place of the default target column.
accuracy(target=Optional[Any], threshold=Optional[Number])
Number
accuracy()
accuracy(target=column1)
accuracy(threshold=0.5)
accuracy(target=column1, threshold=0.5)
log_loss(target)
Log loss score between target and outputs. Available for multiclass classification model tasks.
If target
is specified, it will be used in place of the default target column.
log_loss(target=Optional[Any])
Number
log_loss()
log_loss(target=column1)
r2(target)
R-squared score between target and output. Available for regression model tasks.
If target
is specified, it will be used in place of the default target column.
r2(target=Optional[Any])
Number
r2()
r2(target=column1)
mse(target)
Mean squared error between target and output. Available for regression model tasks.
If target
is specified, it will be used in place of the default target column.
mse(target=Optional[Any])
Number
mse()
mse(target=column1)
mae(target)
Mean absolute error between target and output. Available for regression model tasks.
If target
is specified, it will be used in place of the default target column.
mae(target=Optional[Any])
Number
mae()
mae(target=column1)
mape(target)
Mean absolute percentage error between target and output. Available for regression model tasks.
If target
is specified, it will be used in place of the default target column.
mape(target=Optional[Any])
Number
mape()
mape(target=column1)
wmape(target)
Weighted mean absolute percentage error between target and output. Available for regression model tasks.
If target
is specified, it will be used in place of the default target column.
wmape(target=Optional[Any])
Number
wmape()
wmape(target=column1)
map(target)
Mean average precision score. Available for ranking model tasks.
If target
is specified, it will be used in place of the default target column.
map(target=Optional[Any])
Number
map()
map(target=column1)
ndcg_mean(target)
Mean normalized discounted cumulative gain score. Available for ranking model tasks.
If target
is specified, it will be used in place of the default target column.
ndcg_mean(target=Optional[Any])
Number
ndcg_mean()
ndcg_mean(target=column1)
query_count(target)
Count of ranking queries. Available for ranking model tasks.
If target
is specified, it will be used in place of the default target column.
query_count(target=Optional[Any])
Number
query_count()
query_count(target=column1)