LogoLogo
👨‍💻 API Reference📣 Release Notes📺 Request a Demo
  • Introduction to Fiddler
    • Monitor, Analyze, and Protect your ML Models and Gen AI Applications
  • Fiddler Doc Chatbot
  • First Steps
    • Getting Started With Fiddler Guardrails
    • Getting Started with LLM Monitoring
    • Getting Started with ML Model Observability
  • Tutorials & Quick Starts
    • LLM and GenAI
      • LLM Evaluation - Compare Outputs
      • LLM Monitoring - Simple
    • Fiddler Free Guardrails
      • Guardrails - Quick Start Guide
      • Guardrails - Faithfulness
      • Guardrails - Safety
      • Guardrails FAQ
    • ML Observability
      • ML Monitoring - Simple
      • ML Monitoring - NLP Inputs
      • ML Monitoring - Class Imbalance
      • ML Monitoring - Model Versions
      • ML Monitoring - Ranking
      • ML Monitoring - Regression
      • ML Monitoring - Feature Impact
      • ML Monitoring - CV Inputs
  • Glossary
    • Product Concepts
      • Baseline
      • Custom Metric
      • Data Drift
      • Embedding Visualization
      • Fiddler Guardrails
      • Fiddler Trust Service
      • LLM and GenAI Observability
      • Metric
      • Model Drift
      • Model Performance
      • ML Observability
      • Trust Score
  • Product Guide
    • LLM Application Monitoring & Protection
      • LLM-Based Metrics
      • Embedding Visualizations for LLM Monitoring and Analysis
      • Selecting Enrichments
      • Enrichments (Private Preview)
      • Guardrails for Proactive Application Protection
    • Optimize Your ML Models and LLMs with Fiddler's Comprehensive Monitoring
      • Alerts
      • Package-Based Alerts (Private Preview)
      • Class Imbalanced Data
      • Enhance ML and LLM Insights with Custom Metrics
      • Data Drift: Monitor Model Performance Changes with Fiddler's Insights
      • Ensuring Data Integrity in ML Models And LLMs
      • Embedding Visualization With UMAP
      • Fiddler Query Language
      • Model Versions
      • How to Effectively Use the Monitoring Chart UI
      • Performance Tracking
      • Model Segments: Analyze Cohorts for Performance Insights and Bias Detection
      • Statistics
      • Monitoring ML Model and LLM Traffic
      • Vector Monitoring
    • Enhance Model Insights with Fiddler's Slice and Explain
      • Events Table in RCA
      • Feature Analytics Creation
      • Metric Card Creation
      • Performance Charts Creation
      • Performance Charts Visualization
    • Master AI Monitoring: Create, Customize, and Compare Dashboards
      • Creating Dashboards
      • Dashboard Interactions
      • Dashboard Utilities
    • Adding and Editing Models in the UI
      • Model Editor UI
      • Model Schema Editing Guide
    • Fairness
    • Explainability
      • Model: Artifacts, Package, Surrogate
      • Global Explainability: Visualize Feature Impact and Importance in Fiddler
      • Point Explainability
      • Flexible Model Deployment
        • On Prem Manual Flexible Model Deployment XAI
  • Technical Reference
    • Python Client API Reference
    • Python Client Guides
      • Installation and Setup
      • Model Onboarding
        • Create a Project and Onboard a Model for Observation
        • Model Task Types
        • Customizing your Model Schema
        • Specifying Custom Missing Value Representations
      • Publishing Inference Data
        • Creating a Baseline Dataset
        • Publishing Batches Of Events
        • Publishing Ranking Events
        • Streaming Live Events
        • Updating Already Published Events
        • Deleting Events From Fiddler
      • Creating and Managing Alerts
      • Explainability Examples
        • Adding a Surrogate Model
        • Uploading Model Artifacts
        • Updating Model Artifacts
        • ML Framework Examples
          • Scikit Learn
          • Tensorflow HDF5
          • Tensorflow Savedmodel
          • Xgboost
        • Model Task Examples
          • Binary Classification
          • Multiclass Classification
          • Regression
          • Uploading A Ranking Model Artifact
    • Integrations
      • Data Pipeline Integrations
        • Airflow Integration
        • BigQuery Integration
        • Integration With S3
        • Kafka Integration
        • Sagemaker Integration
        • Snowflake Integration
      • ML Platform Integrations
        • Integrate Fiddler with Databricks for Model Monitoring and Explainability
        • Datadog Integration
        • ML Flow Integration
      • Alerting Integrations
        • PagerDuty Integration
    • Comprehensive REST API Reference
      • Projects REST API Guide
      • Model REST API Guide
      • File Upload REST API Guide
      • Custom Metrics REST API Guide
      • Segments REST API Guide
      • Baselines REST API Guide
      • Jobs REST API Guide
      • Alert Rules REST API Guide
      • Environments REST API Guide
      • Explainability REST API Guide
      • Server Info REST API Guide
      • Events REST API Guide
      • Fiddler Trust Service REST API Guide
    • Fiddler Free Guardrails Documentation
  • Configuration Guide
    • Authentication & Authorization
      • Adding Users
      • Overview of Role-Based Access Control
      • Email Authentication
      • Okta Integration
      • SSO with Azure AD
      • Ping Identity SAML SSO Integration
      • Mapping LDAP Groups & Users to Fiddler Teams
    • Application Settings
    • Supported Browsers
  • History
    • Release Notes
    • Python Client History
    • Compatibility Matrix
    • Product Maturity Definitions
Powered by GitBook

© 2024 Fiddler Labs, Inc.

On this page
  • API Reference
  • API Response types
  • List of APIs
  • Just getting started?

Was this helpful?

  1. Technical Reference

Comprehensive REST API Reference

API Reference

The Fiddler API is organized around REST. Our API has predictable resource-oriented URLs, accepts form-encoded request bodies, returns JSON-encoded responses, and uses standard HTTP response codes, authentication, and verbs.

API Response types

Fiddler API returns three kinds of responses

Normal Response

Normal response are the ones which doesn’t need to be paginated.

{
  api_version: <API version responding back with the response>,
  kind: "NORMAL",
  data: <Actual Response Object>
}

Paginated Response

Paginated response contains the relevant items along with pagination data.

{
  api_version: <API version responding back with the response>,
  kind: "PAGINATED",
  data: {
    page_size: <integer>,
    item_count: <integer>,
    total: <integer>,
    page_count: <integer>,
    page_index: <integer>,
    offset: <integer>,
    items: [<Array of items>]
  }
}

Error Response

In case something goes wrong, error response is returned.

{
  api_version: <API version responding back with the response>,
  kind: "ERROR",
  error: {
    code: <Error code>,
    message: <string>,
    errors: [
      {
        reason: <string>,
        message: <string>,
        help: <string>
      }
    ]
  }
}

Fiddler uses conventional HTTP response codes to indicate the success or failure of an API request. In general: Codes in the 2xx range indicate success. Codes in the 4xx range indicate an error that failed given the information provided (e.g., a required parameter was omitted, a charge failed, etc.). Codes in the 5xx range indicate an error with Fiddler’s servers (these are rare).

List of APIs


Just getting started?

PreviousPagerDuty IntegrationNextProjects REST API Guide

Last updated 1 month ago

Was this helpful?

Check out our .

Projects
Model
File Upload
Custom Metrics
Segments
Baseline
Jobs
Alert Rules
Environment
Explainability
Server Info
Quickstart Notebooks