Multivariate
API reference for Multivariate
Multivariate
Represents custom features derived from multiple columns using clustering analysis.
Multivariate features combine multiple numeric columns into a single derived feature using k-means clustering algorithms. This enables monitoring of multivariate drift and detecting unusual combinations that might not be apparent when monitoring columns individually.
The feature type is automatically set to CustomFeatureType.FROM_COLUMNS and uses clustering to group similar combinations of column values for drift detection.
Examples
Creating a user behavior multivariate feature:
behavior_feature = Multivariate(
name=”user_engagement_cluster”,
columns=[“page_views”, “session_duration”, “clicks”],
n_clusters=8,
monitor_components=True
)Creating a system performance multivariate feature:
perf_feature = Multivariate(
name=”system_health”,
columns=[“cpu_usage”, “memory_usage”, “response_time”],
n_clusters=5,
monitor_components=False
)classmethod validate_columns(value)
Parameters
value (List *[*str ]) Return type: List[str]
classmethod validate_n_clusters(value)
Parameters
value (int) Return type: int
Last updated
Was this helpful?