ModelSchema

API reference for ModelSchema

ModelSchema

Defines the complete schema structure for a model’s input data.

ModelSchema contains the specification of all columns that a model expects to receive, including their data types, constraints, and metadata. This schema is used by Fiddler for data validation, monitoring, and analysis purposes.

The schema acts as a contract between your model and Fiddler, ensuring that incoming data conforms to expected formats and enabling proper drift detection, data quality monitoring, and other features.

Examples

Creating a model schema:

schema = ModelSchema(
    columns=[
    Column(name=”age”, data_type=DataType.INTEGER, min=0, max=120),
    Column(name=”income”, data_type=DataType.FLOAT, min=0),
    Column(name=”category”, data_type=DataType.CATEGORY,
    
    categories=[“A”, “B”, “C”])
  
]

)

Accessing columns by name:

age_column = schema[“age”]
    print(age_column.data_type)

Adding a new column:

new_column = Column(name=”score”, data_type=DataType.FLOAT)
    schema[“score”] = new_column

Removing a column:

del schema[“age”]

Schema version

List of columns

__getitem__(item)

Get column by name

Parameters

item (str) Return type: Column

__setitem__(key, value)

Set column by name

Return type: None

__delitem__(key)

Delete column by name

Parameters

key (str) Return type: None

Last updated

Was this helpful?