ModelSchema
API reference for ModelSchema
ModelSchema
Defines the complete schema structure for a model’s input data.
ModelSchema contains the specification of all columns that a model expects to receive, including their data types, constraints, and metadata. This schema is used by Fiddler for data validation, monitoring, and analysis purposes.
The schema acts as a contract between your model and Fiddler, ensuring that incoming data conforms to expected formats and enabling proper drift detection, data quality monitoring, and other features.
Examples
Creating a model schema:
schema = ModelSchema(
columns=[
Column(name=”age”, data_type=DataType.INTEGER, min=0, max=120),
Column(name=”income”, data_type=DataType.FLOAT, min=0),
Column(name=”category”, data_type=DataType.CATEGORY,
categories=[“A”, “B”, “C”])
]
)Accessing columns by name:
age_column = schema[“age”]
print(age_column.data_type)Adding a new column:
new_column = Column(name=”score”, data_type=DataType.FLOAT)
schema[“score”] = new_columnRemoving a column:
del schema[“age”]Schema version
List of columns
__getitem__(item)
Get column by name
Parameters
item (str) Return type: Column
__setitem__(key, value)
Set column by name
Return type: None
__delitem__(key)
Delete column by name
Parameters
key (str) Return type: None
Last updated
Was this helpful?