evaluate
API reference for evaluate
evaluate
evaluate()
Evaluate a dataset using a task function and a list of evaluators.
This is the main entry point for running evaluation experiments. It creates an experiment, runs the evaluation task on all dataset items, and executes the specified evaluators to generate scores.
The function automatically:
Creates a new experiment with a unique name
Runs the evaluation task on each dataset item
Executes all evaluators on the task outputs
Returns comprehensive results with timing and error information
Key Features:
Automatic Experiment Creation: Creates experiments with unique names
Task Execution: Runs custom evaluation tasks on dataset items
Evaluator Orchestration: Executes multiple evaluators on outputs
Error Handling: Gracefully handles task and evaluator failures
Result Collection: Returns detailed results with timing information
Flexible Configuration: Supports custom parameter mapping for evaluators
Concurrent Processing: Supports concurrent processing of dataset items
Use Cases:
Model Evaluation: Evaluate LLM models on test datasets
A/B Testing: Compare different model versions or configurations
Quality Assurance: Validate model performance across different inputs
Benchmarking: Run standardized evaluations on multiple models
Parameters
task
Callable[[Dict[str, Any], Dict[str, Any], Dict[str, Any]], Dict[str, Any]]
✗
None
Function that processes dataset items and returns outputs. Must accept (inputs, extras, metadata) and return dict of outputs.
evaluators
list[Evaluator | Callable]
✗
None
List of evaluators to run on task outputs. Can include both Evaluator instances and callable functions.
name_prefix
str | None
✗
None
Optional prefix for the experiment name. If not provided, uses the dataset name as prefix. A unique ID is always appended.
description
str | None
✗
None
Optional description for the experiment.
metadata
dict | None
✗
None
Optional metadata dictionary for the experiment.
score_fn_kwargs_mapping
Dict[str, str | Callable[[Dict[str, Any]], Any]] | None
✗
None
Optional evaluation-level mapping for transforming evaluator parameters. Maps parameter names to either string keys or transformation functions. This mapping has lower priority than evaluator-level mappings set in the evaluator constructor, allowing evaluators to define sensible defaults while still permitting customization at the evaluation level.
max_workers
int
✗
None
Maximum number of workers to use for concurrent processing. Use more than 1 only if the eval task function is thread-safe.
Returns
List of ExperimentItemResult objects, each containing : the experiment item data and scores for one dataset item. Return type: ExperimentResult
Raises
ValueError – If dataset is empty or evaluators are invalid.
RuntimeError – If no connection is available for API calls.
ApiError – If there’s an error creating the experiment or communicating with the Fiddler API.
Example
evaluate
evaluate()
Evaluate a dataset using a task function and a list of evaluators.
This is the main entry point for running evaluation experiments. It creates an experiment, runs the evaluation task on all dataset items, and executes the specified evaluators to generate scores.
The function automatically:
Creates a new experiment with a unique name
Runs the evaluation task on each dataset item
Executes all evaluators on the task outputs
Returns comprehensive results with timing and error information
Key Features:
Automatic Experiment Creation: Creates experiments with unique names
Task Execution: Runs custom evaluation tasks on dataset items
Evaluator Orchestration: Executes multiple evaluators on outputs
Error Handling: Gracefully handles task and evaluator failures
Result Collection: Returns detailed results with timing information
Flexible Configuration: Supports custom parameter mapping for evaluators
Concurrent Processing: Supports concurrent processing of dataset items
Use Cases:
Model Evaluation: Evaluate LLM models on test datasets
A/B Testing: Compare different model versions or configurations
Quality Assurance: Validate model performance across different inputs
Benchmarking: Run standardized evaluations on multiple models
Parameters
task
Callable[[Dict[str, Any], Dict[str, Any], Dict[str, Any]], Dict[str, Any]]
✗
None
Function that processes dataset items and returns outputs. Must accept (inputs, extras, metadata) and return dict of outputs.
evaluators
list[Evaluator | Callable]
✗
None
List of evaluators to run on task outputs. Can include both Evaluator instances and callable functions.
name_prefix
str | None
✗
None
Optional prefix for the experiment name. If not provided, uses the dataset name as prefix. A unique ID is always appended.
description
str | None
✗
None
Optional description for the experiment.
metadata
dict | None
✗
None
Optional metadata dictionary for the experiment.
score_fn_kwargs_mapping
Dict[str, str | Callable[[Dict[str, Any]], Any]] | None
✗
None
Optional evaluation-level mapping for transforming evaluator parameters. Maps parameter names to either string keys or transformation functions. This mapping has lower priority than evaluator-level mappings set in the evaluator constructor, allowing evaluators to define sensible defaults while still permitting customization at the evaluation level.
max_workers
int
✗
None
Maximum number of workers to use for concurrent processing. Use more than 1 only if the eval task function is thread-safe.
Returns
List of ExperimentItemResult objects, each containing : the experiment item data and scores for one dataset item. Return type: ExperimentResult
Raises
ValueError – If dataset is empty or evaluators are invalid.
RuntimeError – If no connection is available for API calls.
ApiError – If there’s an error creating the experiment or communicating with the Fiddler API.
Example
from fiddler_evals import evaluate
from fiddler_evals.evaluators import AnswerRelevance, Conciseness, RegexSearch
from fiddler_evals import Dataset
# Get dataset
dataset = Dataset.get_by_name("my-eval-dataset")
# Define evaluation task
def eval_task(inputs, extras, metadata):
# Your model inference logic here
question = inputs["question"]
answer = my_model.generate(question)
return {"answer": answer, "question": question}
# Example 1: Basic evaluation with parameter mapping
results = evaluate(
dataset=dataset,
task=eval_task,
evaluators=[AnswerRelevance(), Conciseness()],
name_prefix="my-model-eval",
description="Evaluation of my model on Q&A dataset",
metadata={"model_version": "v1.0", "temperature": 0.7},
score_fn_kwargs_mapping={
"output": "answer",
"question": lambda x: x["inputs"]["question"]
}
)
# Example 2: Multiple evaluator instances with score_name_prefix for differentiation
evaluators = [
RegexSearch(
r"\d+",
score_name_prefix="question",
score_name="has_number",
score_fn_kwargs_mapping={"output": "question"}
),
RegexSearch(
r"\d+",
score_name_prefix="answer",
score_name="has_number",
score_fn_kwargs_mapping={"output": "answer"}
)
]
results = evaluate(
dataset=dataset,
task=eval_task,
evaluators=evaluators,
score_fn_kwargs_mapping={
"question": lambda x: x["inputs"]["question"],
# Note: "answer" mapping not needed since evaluator defines it
}
)
# Process results
for result in results:
item_id = result.experiment_item.dataset_item_id
status = result.experiment_item.status
print(f"Item {item_id}: {status}")
for score in result.scores:
print(f" {score.name}: {score.value} ({score.status})")
<div data-gb-custom-block data-tag="hint" data-style='info'>
The function processes dataset items sequentially. For large datasets,
consider implementing parallel processing or batch processing strategies.
The experiment name is automatically made unique by appending datetime.
</div>
Parameter Mapping Priority:
When both evaluator-level and evaluation-level mappings are present,
evaluator-level mappings take precedence. This allows evaluators to define
sensible defaults while still permitting customization at the evaluation level.
Mapping Priority (highest to lowest):
1. Evaluator-level score_fn_kwargs_mapping (set in evaluator constructor)
2. Evaluation-level score_fn_kwargs_mapping (passed to evaluate function)
3. Default parameter resolutionLast updated
Was this helpful?