Baseline
API reference for Baseline
Baseline
Baseline for drift detection and model performance monitoring.
A Baseline defines a reference point for comparing production data against expected patterns. It serves as the foundation for detecting data drift, model performance degradation, and distributional changes in ML systems.
Example
# Create a static baseline from training data
baseline = Baseline(
name=”production_baseline_v1”,
model_id=model.id,
environment=EnvType.PRE_PRODUCTION,
dataset_id=training_dataset.id,
type_=”STATIC”
).create()
# Create a rolling 30-day baseline
rolling_baseline = Baseline(
name=”rolling_30day”,
model_id=model.id,
environment=EnvType.PRODUCTION,
type_=”ROLLING_WINDOW”,
window_bin_size=WindowBinSize.DAY,
offset_delta=30
).create()
# Monitor drift detection
print(f”Baseline ‘{baseline.name}’ has {baseline.row_count} records”)
print(f”Created: {baseline.created_at}”)Initialize a Baseline instance.
Creates a baseline configuration for drift detection and monitoring. The baseline serves as a reference point for comparing production data against expected patterns.
Parameters
name
str
✗
None
Human-readable name for the baseline. Should be descriptive and unique within the model context.
model_id
UUID | str
✗
None
UUID of the model this baseline belongs to. Must be a valid model that exists in the Fiddler platform.
environment
✗
None
Environment type (PRE_PRODUCTION or PRODUCTION). Determines the data environment this baseline monitors.
dataset_id
UUID | str | None
✗
None
UUID of the reference dataset. Required for STATIC baselines, optional for time-based baselines.
start_time
int | None
✗
None
Start timestamp for time-based baselines (Unix timestamp). Defines the beginning of the reference period.
end_time
int | None
✗
None
End timestamp for time-based baselines (Unix timestamp). Defines the end of the reference period.
offset_delta
int | None
✗
None
Time offset in days for rolling/previous period baselines. For ROLLING_WINDOW: size of the sliding window. For PREVIOUS_PERIOD: how far back to compare.
window_bin_size
WindowBinSize | str | None
✗
None
Aggregation window for time-series analysis. Controls how data is grouped for comparison.
Example
# Static baseline from training data
baseline = Baseline(
name=”training_baseline_v2”,
model_id=model.id,
environment=EnvType.PRE_PRODUCTION,
dataset_id=training_dataset.id,
type_=”STATIC”
)
# Rolling 7-day window baseline
rolling_baseline = Baseline(
name=”weekly_rolling”,
model_id=model.id,
environment=EnvType.PRODUCTION,
type_=”ROLLING_WINDOW”,
offset_delta=7,
window_bin_size=WindowBinSize.DAY
)
# Previous month comparison baseline
monthly_baseline = Baseline(
name=”month_over_month”,
model_id=model.id,
environment=EnvType.PRODUCTION,
type_=”PREVIOUS_PERIOD”,
offset_delta=30,
window_bin_size=WindowBinSize.DAY
)classmethod get(id_)
Retrieve a baseline by its unique identifier.
Fetches a baseline from the Fiddler platform using its UUID. This method returns the complete baseline configuration including metadata and statistics.
Parameters
id – The unique identifier (UUID) of the baseline to retrieve. Can be provided as a UUID object or string representation.
id_ (UUID | str)
Returns
The baseline instance with all configuration and metadata populated from the server. Return type: Baseline
Raises
NotFound – If no baseline exists with the specified ID.
ApiError – If there’s an error communicating with the Fiddler API.
Example
# Retrieve baseline by ID
baseline = Baseline.get(id_=”550e8400-e29b-41d4-a716-446655440000”)
print(f”Baseline: {baseline.name}”)
print(f”Type: {baseline.type}”)
print(f”Environment: {baseline.environment}”)
print(f”Records: {baseline.row_count}”)
# Check baseline configuration
if baseline.type == “STATIC”:
print(f”Reference dataset: {baseline.dataset_id}”)
elif baseline.type == “ROLLING_WINDOW”:
print(f”Window size: {baseline.offset_delta} days”)
print(f”Bin size: {baseline.window_bin_size}”)classmethod from_name(name, model_id)
Get the baseline instance of a model from baseline name
Parameters
name
str
✗
None
Baseline name
model_id
UUID | str
✗
None
Model identifier
Returns
Baseline instance Return type: Baseline
classmethod list(model_id, type_=None, environment=None)
Get a list of all baselines of a model.
Return type: Iterator[Baseline]
create()
Create a new baseline. Return type: Baseline
delete()
Delete a baseline. Return type: None
Last updated
Was this helpful?